Agenda

- Welcome and introductions
- Master planning process
- Facility Requirements
- Project schedule
- Public meeting preparation
- Next steps/action items
- Your thoughts
Master Planning Process

PROJECT INITIATION
- Scoping Sessions
- Scope & Fee Development
- Schedule Development

INVENTORY
- Review of Documentation
- Airfield Facilities
- Terminal Area Facilities
- Ground Access/Parking
- Navigational Aids
- Support/Ancillary Facilities
- Activity Statistics
- Pavement Evaluation
- Airspace/ATC Procedures
- Meteorological Data
- Land Use & Environmental Considerations
- Utilities

AVIATION FORECASTS
- Review Historical Activity
- Industry Trends
- Socioeconomic Data
- Passengers
- Aircraft Operations
- Cargo Activity
- Peak Activity
- Aircraft Fleet Mix
- TAF/Aerospace Forecasts
- 20-Year Forecasts

FACILITY REQUIREMENTS
- Airfield
- RDC/TDG
- Runway Length Analysis
- Terminal
- Gates
- Baggage Handling
- Ticketing
- Security
- Air Cargo
- General Aviation
- CA Terminal
- Hangar Facilities
- Apron Facilities
- Support Facilities
- Ground Transportation
- Parking
- Roads
- Utilities

ALTERNATIVES ANALYSIS
- RDC, TDG, and Approach Upgrades
- Airfield Alternatives
- Land Use & Environmental Considerations
- Highest & Best Use Evaluation
- Terminal
- Cargo
- Support Facilities
- Ground Transportation
- Landside Development Alternatives
- Non-Airport Alternatives

ALTERNATIVES REFINEMENT
- Detailed Cost Estimates
- Environmental Screening
- Sustainability
- Constructability Analysis

IMPLEMENTATION PLAN
- Financial Plan
- Project Phasing
- CIP Development

AIRPORT LAYOUT PLANS
- Cover Sheet
- Data Sheet
- Airport Layout Plan Set
- Project Closeout
- Terminal Area Drawing
- Inner Approach Drawing
- Departure Surface Drawing
- Land Use Drawing
- Property Map Drawing

DELIVERABLES
- Master Plan Report
- FAA Review

PUBLIC INVOLVEMENT / STAKEHOLDER COORDINATION
- Technical Advisory Committee
- Public Workshops
- Public Awareness Program
- Website
- Newsletters

HMCAA Briefing

NTP

PHASE I

PHASE II

PHASE III

PHASE IV

PHASE V

We Make a Difference

6/27/2017
Forecasts of Aviation Demand
Huntsville International Airport
Passenger Enplanements

Based Aircraft

Aircraft Operations
Facility Requirements

- Passenger Terminal Area
- Air Cargo Facilities
- Airfield Capacity and Configuration
- Design Aircraft Identification
- Runway Length Analysis
- Runway Strength Analysis
- Airfield Design Standards Analysis

- Airfield Lighting, Markings and Signage, and Navigational Aids
- Parking and Terminal Access
- General Aviation Facilities
- Support Facilities
- Utilities
- Airspace and Obstruction to Air Navigation
- Land Area Requirements
IATA Performance guidelines are generally based on a combination of Space & Time. Guidelines vary by processing area based on the type of process and the passenger characteristics and behavior in that area.

<table>
<thead>
<tr>
<th>LOS Parameter</th>
<th>Space</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over-Design</td>
<td>Excessive or Empty Space</td>
<td>Overprovision of resources</td>
</tr>
<tr>
<td>Optimum</td>
<td>Sufficient space to accommodate the necessary functions in a comfortable environment</td>
<td>Acceptable waiting times</td>
</tr>
<tr>
<td>Sub-Optimum</td>
<td>Crowded and uncomfortable</td>
<td>Unacceptable waiting times</td>
</tr>
</tbody>
</table>

The “general objective is to allow for a realistic design horizon for passenger facilities without over or underproviding.”

Previous Edition of ADRM Used LOS A-F
- LOS A/B ~Over Design
- LOS C ~Optimum
- LOS D/E ~Suboptimum
IATA Performance guidelines are generally based on a combination of Space & Time.

Goal for this effort was selected as the upper half of Optimum LOS.

Per IATA:
- If one parameter is in Suboptimum, “improvements need to be considered”
- If both parameters are in Suboptimum, “immediate actions need to be taken”
Demand Requirements are based on the *busiest hour* of the average day of the busiest month

Review of current Activity and Flight Schedules

New Flight Schedules and Passenger Counts created for 2021, 2026, and 2036

- 2016 - maximum of 10 arriving or departing flights and 601 passengers boarding / arriving
- 2021 - maximum of 10 arriving or departing flights and 681 passengers boarding / arriving
- 2026 - maximum of 12 arriving or departing flights and 812 passengers boarding / arriving
- 2036 - maximum of 14 arriving or departing flights and 1,080 passengers boarding / arriving

Sources: Approved Forecasts; MAPS / Appendix A
HSV Terminal Analysis Areas

- Review for Chokepoints and Activity Triggers
 - Access Roadway
 - Parking Lots
 - Curbfront Use
 - Check-In / Ticketing
 - Checked Bag Screening
 - Passenger Screening
 - Vertical Circulation
 - Aircraft Apron
 - Gates/ Holdrooms
 - Concessions
 - Baggage Claim

- Consideration of Passenger Convenience / Wayfinding
The loop roadway is sufficient to accommodate passenger-based vehicles getting to/from the curbside, parking or rental car facilities through the 2036 demand level. These findings are based on the peak 10-minute flow per roadway segment extrapolated to represent a peak hour.
Current Public Parking totals approximately 4,000 spaces

- Approximately 65% in deck, 35% surface lots

- Goals for good level of service are 85-90% peak occupancy (Allows for “flow” space finding)

- Preserve options for deck parking or lower cost surface parking

- Current parking should meet total demand to 2026

- By 2036, additional public parking of approximately 1,200 spaces will be needed
- Rental Cars have current issues with adequate space for ready and return parking
- By 2036, they will need about double the 296 spaces currently allocated
- Storage and service facilities will need to be updated and expanded in the planning period to 2036
Current curb includes separate areas for curbside drop-offs and pick-ups, 10- minute public parking, an inner commercial curb, and spaces for taxis and hotel/limo users.

Current Level of Service is optimum in all areas.

By 2036, the curbfront demand will increase by about 40% overall.

Storage and service facilities will need to be updated and expanded in the planning period to 2036.

Future level of service should remain optimum, with some reallocation of spaces.
Curbside: Future Trends

Transportation Network Issues
- Permits / Regulations
- Insurance
- Revenue Recognition
- Effects / Impacts -
 - Fewer shared ride vans
 - Little change in limos
 - Fewer public transit rides
 - Less use of Rental Cars (-5% to -10%)
 - Less use of private vehicles (-17%)
 - Less use of airport parking (-5% to -10%)

Source: TRN News July / August 2016
Questions / Discussion Break
Commercial passenger aviation really took-off in the 1950’s and 1960’s.

Originally the check-in process involved a lot of paper and person to person interactions.

Processes and organization of terminals were linear.
Current trends are to allow for different levels of service and use technology to minimize paper and personnel.

Process is more fluid and organization of terminals reflect this change.
- Four current airlines use 27 of the 30 available ticket positions
- Current agent positions are able to provide a optimum or better level of service through 2036
- Space for new airlines may be needed in the future, adding another 5-8 positions
- Additional lobby space projected in the latter half of the planning period
Three of the current airlines provide a total of 12 kiosk check-in locations

Current agent positions are able to provide a optimum level of service through 2026

Space for new airlines may be needed in the future, adding another 3-8 kiosk positions

Additional queuing space projected in the latter half of the planning period
Check-In: Future Trends

Delta to test facial-recognition self-service bag drop

JetBlue Self-Boarding

Board in a snap.
A quick photo match identifies customers at the gate.

- Self-service check-in
- Self-boarding begins
- Customer steps up to the camera. Photo is captured.
- CBP matches the image to customer’s passport photo in database.
- Customer gets the go-ahead to board and proceeds to jet bridge.

Simple & Seamless.
Added Security.

Delta Airline will be the first US carrier to test facial recognition software to match passengers to their luggage. Buzz090

508 Shares
1. enter departure hall
2. choose between manned desk or self-service
3. screen attracts attention
4. scan passport, language changes
5. go through interface steps
6. retrieve baggage label
7. attach baggage label to bag
8. place baggage on belt
9. at end of procedure: compliments and gate information
10. if problems, ask for help. Personnel comes to passenger
11. personnel can take over procedure
Questions / Discussion Break
The photo on the left side is of a possible threat with a prohibited item.

The photo on the right side is of a passenger with a piece of luggage.

The only way to tell the difference is to put each of them through the security screening procedures of the TSA.
The chart below shows the 10-minute window, bag rates for baseline 2016 flight schedule of all outbound flights plotted over a 24-hour timeline. This chart shows the highest demand peak from 5:00 - 5:30 and a reduced peak in the afternoon at 13:30.

HSV AIRPORT OUTBOUND BAG VOLUMES

Bag Rate for all Flights - Baseline 2016

- **Peak 10 min Bag Rate 34.73**

FIGURE 3 - BAG VOLUMES

(SEE APPENDIX A FOR DETAILED FLIGHT SCHEDULES)
(1) screening machine per each of the three (3) active lines will be adequate for the most extended forecast of 20 years.

The high volume carriers Delta and American exceed the single CT80 DR screening machine capacity at 80% and 90% respectively. United, being the lower volume carrier, did not exceed the capacity of a single screening machine even at 200% growth.
HSV Passenger Screening

- Current configuration allows for three lanes of passenger screening
- HSV has a higher portion of Pre-Check participation than many other airports
- Current lanes are able to provide a optimum or better level of service to 2026
- Key components of demand are keeping within optimum wait times and facilitating Pre-Check
- Additional queuing space projected in the latter half of the planning period
Screening Area Improvements include:
- Improved screening equipment
- Automatic tray return
- Conveyor diversion for alarm and selectee bags

Queuing Area Improvements include:
- Isolation of the screening area
- Calming color and sound
- Video display for instruction

Source Transportation Security Administration bulletin and website
Source International Air Transport Association (IATA) website
Questions / Discussion Break
Current apron configuration allows for a variety of aircraft to park and load simultaneously

12 of the 14 gate positions are served by boarding bridges

Planning of apron and boarding bridges included accommodation of wide-body aircraft

Current gates may meet the needs of HSV through 2036, dependent on fleet mix

Common or shared use of gates by airlines increases capacity

In latter half of the planning period, remote apron parking for Remain Over Night (RON) parking is expected
Holdrooms are available for each of the 10-14 gate positions needed through 2036

Current holdrooms are well sized to allow flexible use of gates and maintain Optimum or better level of service

Ground boarding gates 11 and 12 have space available for holdroom expansion if needed

Added airlines operations space may be needed in latter half of planning period for new airlines
HSV 30’ concourse circulation width is well suited to current and future demands.
HSV Concessions

- HSV has a suitable level of service in current concessions based on ACI Benchmarking study in 2015 for small hub airports similar to HSV
- The hotel provides more food and beverage choices in the non-secure area than comparable sized airports
- Additions to sterile (concourse) area concessions would be expected in the latter half of the planning period
- Concessions storage improvements are needed
- Some currently vacant space allows for flexibility in the future for concessions and support uses
Current bag claim devices provide all the capacity needed for claim frontage through 2036

Current queuing areas are sufficient to provide Optimum or better level of service through 2036

The baggage system has the capacity to keep wait times to between 7 to 20 minutes

The baggage unloading area for airline use is able to meet capacity requirements through 2036
Questions / Discussion Break
A 2011 study by the Airport Cooperative Research Program (ACRP), which is sponsored by the FAA, dealt with “Passenger Level of Service and Spatial Planning for Airport Terminals” in ACRP Report 55. A full copy is available at http://www.trb.org/Publications/Blurbs/166098.aspx. Some of the key findings of the report included:

- Positive passenger experiences have a more direct correlation to the amount of time spent by passengers to complete the processes necessary for air travel, and with the predictability of their ability to complete the journey, rather than with the amount of space for a specific function.
- Key processing points include check-in (via agent desk or kiosk interactions), passenger screening checkpoints, and baggage claim. None of these processes are directly under the control of the Airport, but are provided by others (Airlines, TSA).
- Availability of terminal amenities that respect the passenger’s time and needs improve the perceived level of service (LOS). This can include access to Wi-Fi and electrical outlets, space away from noise to be productive, or areas to be entertained while waiting. These waiting experiences and amenities are more subject to the airport’s control.
- Ability to control the successes of the journey reduces passenger stress. This is reflected in acceptable wait times, simple and intuitive wayfinding, short walk distances, and reliable/easy access to flight information.
HSV Passenger Convenience

Processes are less subject to Airport’s control as they are provided by others (Airlines, TSA)

- Check-In / Ticketing
- Security Screening
- Passenger Boarding
- Checked Baggage Claim
Waiting Experiences are more subject to Airport’s control

- Electrical Outlets
- Wi-Fi Access
- Privacy / Entertainment Options
- Level of Amenities and Concessions
Questions / Discussion Break
Air Cargo

- Aggressive air cargo forecast
- New facilities needed immediately
- Business development initiatives
The new facilities shown indicate the year in which a new building will need to be delivered for occupancy in order to support the forecasted increase in cargo volumes.

<table>
<thead>
<tr>
<th>Year</th>
<th>New Facilities</th>
<th>Panalpina (Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td></td>
<td>195,699,475</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>211,355,433</td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td>228,263,868</td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td>246,524,977</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td>266,246,975</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td>287,546,733</td>
</tr>
<tr>
<td>2022</td>
<td>Yes</td>
<td>310,550,472</td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td>335,394,510</td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td>362,226,070</td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td>391,204,156</td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td>422,500,489</td>
</tr>
<tr>
<td>2027</td>
<td>Yes</td>
<td>456,300,528</td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td>492,804,570</td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td>532,228,935</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td>574,807,250</td>
</tr>
<tr>
<td>2031</td>
<td></td>
<td>620,791,830</td>
</tr>
<tr>
<td>2032</td>
<td></td>
<td>670,455,177</td>
</tr>
<tr>
<td>2033</td>
<td>Yes</td>
<td>724,091,591</td>
</tr>
<tr>
<td>2034</td>
<td></td>
<td>782,018,918</td>
</tr>
<tr>
<td>2035</td>
<td></td>
<td>844,580,432</td>
</tr>
<tr>
<td>2036</td>
<td></td>
<td>912,146,866</td>
</tr>
</tbody>
</table>
New Cargo Facility Requirements

- ACRP’s Annual Tonnage Per Area Ratio = 0.81 tons per SF
- ACRP’s Area Per Annual Ton Ratio = 10 SF per annual ton
- Total Air Cargo Services Ratio = 1m kilos/ 1,000 SF annually
Infrastructure Requirements

From Airports Council International, North America - Air Cargo Guide 2013: "For general purposes, a very rough rule-of-thumb for estimating apron requirements assumes six square feet of apron for every one square foot of available cargo building area. This must also consider the fleet mix of the potential tenants and users. This number includes taxiways/taxilanes, service roads, marshalling areas and aircraft parking positions.” For the table above, the ratio used is number of buildings multiplied by 100,000 SF.

From ACRP Report 143: The GSE Storage Ratio is determined by taking the total tons estimated for 2036 at 456,073 and dividing by 1.11 to determine the SF required for GSE which will total as 308,157 reflected above.

City of Huntsville Zoning Ordinances for Density Regulations: Buildings shall not cover an area greater than thirty percent of the total area of the tract upon which the buildings are located.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Cargo Buildings (100,000 SF each)</th>
<th>Aircraft Parking/Apron Area</th>
<th>GSE Storage Area</th>
<th>Building Density Footprint</th>
<th>Total Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>Acres</td>
<td>SF</td>
<td>Acres</td>
</tr>
<tr>
<td>2021-2026</td>
<td>1</td>
<td>600,000</td>
<td>13.8</td>
<td>102,719</td>
<td>2.358</td>
</tr>
<tr>
<td>2026-2031</td>
<td>1</td>
<td>600,000</td>
<td>13.8</td>
<td>102,719</td>
<td>2.358</td>
</tr>
<tr>
<td>2031-2036</td>
<td>1</td>
<td>600,000</td>
<td>13.8</td>
<td>102,719</td>
<td>2.358</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4</td>
<td>1,800,000</td>
<td>413</td>
<td>308,157</td>
<td>7.08</td>
</tr>
</tbody>
</table>
Infrastructure Requirements

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Cargo Buildings (100,000 SF each)</th>
<th>Vehicle Parking Area</th>
<th>Access Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SF</td>
<td>Acres</td>
</tr>
<tr>
<td>2021-2026</td>
<td>1</td>
<td>120,000</td>
<td>2.75</td>
</tr>
<tr>
<td>2026-2031</td>
<td>1</td>
<td>120,000</td>
<td>2.75</td>
</tr>
<tr>
<td>2031-2036</td>
<td>1</td>
<td>120,000</td>
<td>2.75</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4</td>
<td>360,000</td>
<td>8.25</td>
</tr>
</tbody>
</table>

ACRP Report 143 recommendations:
- 12 SF of parking space for every square foot of cargo building space
- Number of Access Points = Total cargo building area / 2,900 SF = Access Points
- 25% access points are located on airside and 75% are located on landside of the cargo facility
The availability of significant industrial property that can be developed at/near HSV provides a great deal of flexibility in planning for the utilization of this industrial land. The planning must take into consideration several prospects:

- Development of land at/near the HSV by air cargo derived occupiers
- Development of land at/near the HSV by logistics service providers or other global freight forwarders who utilize the Norfolk Southern Intermodal Terminal as a foundation for their logistics service activities while routing air cargo to/from other gateway or major airports
- Development of land at/near the HSV for use in supporting the aerospace and space/flight support
- Development of land at/near the HSV for use in expanding maintenance, repair and overhaul activities by existing or new service providers who would create a new MRO hub at HSV
- Development of land at/near the HSV for a new campus for global delivery and fulfillment of high volumes of e-commerce.
 - This campus would include high volume sortation facilities, last mile sortation facilities and aggregation/de-aggregation facilities to support merging shipment from disparate retailers or manufacturers for outbound or from inbound flights
Questions / Discussion Break
Runway Configuration

<table>
<thead>
<tr>
<th>Runway Configuration</th>
<th>Mix Index</th>
<th>Hourly Capacity Operations/ Hour</th>
<th>Annual Service Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 20</td>
<td>VFR: 197 IFR: 119</td>
<td>370,000</td>
</tr>
<tr>
<td></td>
<td>21 to 50</td>
<td>VFR: 149 IFR: 113</td>
<td>320,000</td>
</tr>
<tr>
<td></td>
<td>51 to 80</td>
<td>VFR: 126 IFR: 111</td>
<td>305,000</td>
</tr>
<tr>
<td></td>
<td>81 to 120</td>
<td>VFR: 111 IFR: 105</td>
<td>315,000</td>
</tr>
<tr>
<td></td>
<td>121 to 180</td>
<td>VFR: 103 IFR: 99</td>
<td>370,000</td>
</tr>
</tbody>
</table>

Source: Adapted from AC 150/5060-5 Change 2
Note: *: With precision monitoring equipment

Annual Service Volume

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Annual Service Volume = 315,000</th>
<th>VFR Peak Hour = 111</th>
<th>IFR Peak Hour = 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>% of ASV</td>
<td>VFR Peak Hour</td>
<td>% VFR Capacity</td>
</tr>
<tr>
<td>2016</td>
<td>19.35%</td>
<td>49</td>
<td>44.14%</td>
</tr>
<tr>
<td>2036</td>
<td>26.49%</td>
<td>67</td>
<td>60.36%</td>
</tr>
</tbody>
</table>

- 60% Threshold – Plan Improvement
- 80% Threshold – Construct Improvements
Airfield Design

- Critical Aircraft – Boeing 747-8F
- Aircraft Approach Category (AAC) “D”
 - 141 to <166 knots
- Airplane Design Group (ADG) “VI”
 - Tail height – 66 to <80 feet
 - Wingspan – 214 to <262 feet
- Taxiway Design Group (TDG) “5”
Runway Configuration Requirements

An approved Modification of Standards (MOS) is in place allowing Boeing 747-8F operations with the current runway configuration.

- **Runway 18L-36R**
 - Additional 50 feet of width required (full strength pavement)
 - 40 feet of shoulders must be added to runway width
 - Increase blast pads to 280 feet by 400 feet
 - Runway safety area and runway object free area reduced due to road

- **Runway 18R-36L**
 - Additional 50 feet of width required (full strength pavement)
 - 40 feet of shoulders must be added to runway width
 - Increase blast pads to 280 feet by 400 feet
Taxiway Requirements

<table>
<thead>
<tr>
<th>ADG</th>
<th>TDG</th>
<th>Taxiway Dimensions (feet)</th>
<th>Taxiway Separation (feet)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Taxiway Width</td>
<td>Taxiway Edge Safety Margin</td>
<td>Taxiway Shoulder Width</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>VI</td>
<td>5</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>W1-W8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>VI</td>
<td>5</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>C</td>
<td>VI</td>
<td>5</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>C3-C5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>VI</td>
<td>5</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>E1-E9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>III</td>
<td>3</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>G</td>
<td>V</td>
<td>5</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>H</td>
<td>5</td>
<td>75</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>J</td>
<td>5</td>
<td>75</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>K</td>
<td>5</td>
<td>75</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Source: Michael Baker International, Inc., 2017
- Replace incandescent lighting to light emitting diode (LED) and new regulators in electrical vault
- Existing approach lighting systems (ALS), PAPIs, and Instrument Landing Systems (ILS) meet the requirements for the currently established approaches at HSV
- In the future, as new technologies become available or reduced approach minimums are desired, improvements to the existing instrument landing and approach lighting systems will likely be necessary
- ~53,300 SY of general aviation transient apron inventory (additional 2,300 SY over 20 years)
 - ADG I up to ADG IV aircraft
 - Taxilane object free area limits space for ADG III and IV
- Construct 15 conventional hangars over 20 years
- Construct 59 T-hangars over 20 years (~6 buildings)
- ~9,500 SF of general aviation terminal space is needed over 20 years
- **Aircraft Rescue and Firefighting meets requirements**
 - New ARFF station with flexibility to meet Index D

- **Aircraft fuel storage**
 - Expand fuel farm to meet future demand
 - Approximately 814,690 gallons of Jet-A storage would be needed by the end of the 20-year planning period.

- **Airport maintenance**
 - Storage facilities
 - Expansion to be considered near current location
Development envisioned for study may require additional property acquisition

- Land use compatibility
- Future development needs
- Obtain control over an runway projection zone (RPZ)

Avigation easements will be assessed based upon the results of the land use analysis

Continue working with area communities to ensure prevention of incompatible land uses
Questions / Discussion Break
- Airport Alternatives – June to November
- TAC Meeting 4 – Alternatives Workshop – August 9th
- Working Paper 3 – Alternatives – September 29th
- TAC Meeting 5 – October 24th
- Peer Review Committee – October 25th
- Public Information Meeting 2 – November 14th
Join Us for a Public Meeting

Help Us Fly Higher

Huntsville International Airport is developing a long-range vision to help advance the Huntsville region’s goals to foster economic development.

The meeting will provide a forum for members of the community to learn more about the ongoing master plan study for the Huntsville International Airport.

Come share your ideas on how Huntsville can fly higher. Join us at our public open house meeting.

Learn more at hsvmasterplan.mbakerintl.com

DATE JUNE 28, 2017

TIME 6-8 PM

Community Leaders, Businesses and the Public are welcome!

LOCATION HUNTSVILLE INTERNATIONAL AIRPORT

Four Points at Sheraton Hotel
1000 Glenn Hearn Boulevard
Huntsville, AL 35824
- Public information meeting 1 (June 28th)
- TAC working paper 2 comments (July 21st)
- Airport alternatives
- TAC meeting 4 (August 9th)
- TAC meeting 5 (October 24th)
- Public information meeting 2 (November 14th)
Your thoughts . . .